
425

Description Logic for Coalitions

İnanç Seylan
Faculty of Computer Science

Free University of Bozen-Bolzano, Italy
seylan@inf.unibz.it

Wojciech Jamroga
Department of Informatics

Clausthal University of Technology, Germany
wjamroga@in.tu-clausthal.de

ABSTRACT

Coalition Logic (CL) is one of the most important formalisms
for specification and verification of game-like multi-agent
systems. Several extensions of the logic have been stud-
ied in the literature. These extensions are usually fusions
(independent joins) of CL with other modal logics (e.g.,
temporal, epistemic, dynamic, etc.), and they are generally
propositional. In this paper, we propose a game description
logic called CLALC which is based on a product of Coali-
tion Logic with the description logic ALC. The new logic
allows one to reason about agents’ ability to influence first-
order structures. We show that the satisfiability problem for
CLALC is decidable; we prove this by giving a goal-directed
decision procedure for the problem.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms

Theory, Algorithms

Keywords

Strategic logics, description logics, satisfiability, tableaux

1. INTRODUCTION
Coalition logic CL [10, 11] formalizes the ability of groups

of agents to achieve certain outcomes in strategic games.
The central operator of CL is [A], with [A]ϕ meaning that
group of agents A has a strategy to achieve an outcome
state where ϕ holds. The logic has important applications
in the specification and verification of game-like scenarios,
social choice mechanisms (e.g., design of voting protocols),
etc. The latter group of applications is closely related to the
satisfiability problem for CL: showing that a CL specifica-
tion ϕ is satisfiable amounts in most cases to construction
of a model (mechanism, protocol) that satisfies ϕ.

Cite as: Description Logic for Coalitions, İnanç Seylan, Wojciech Jam-
roga, Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Several extensions of CL have been proposed (see [15]
and the references therein). The extensions focus on the
representation of actions, preferences, incomplete informa-
tion, origins of power, social laws, and quantification over
agents and coalitions. A common feature of the resulting
logics is that the underlying language is propositional. In
consequence, we can use them only to address simple prop-
erties of games and states, but not properties of individual
entities that are involved in the game (like people, places,
messages, communication channels etc.). For example, the
only way to say that agent a can make all the sent messages
reach their recipients is to create a proposition that labels
all the states where this is the case (e.g., allSentReceived),
and then write [a]allSentReceived. Of course, this method
of specification is neither elegant nor flexible, and becomes
impractical for all but simplest scenarios.

Description Logics (DLs) are logical formalisms for repre-
senting the knowledge of an application domain in a struc-
tured way [3]. More precisely, DLs allow to describe classes,
assign individuals to these classes, and define binary rela-
tions on individuals. For instance, we can use DL terms
Sent and Received for the classes of sent and received mes-
sages. Then, the DL formula Sent � Received says that every
sent message is received too. Note that the dual statement:
“some sent messages have been received” can be expressed
by formula ¬(Sent � Received = ⊥).

Description Logics are important because they are decid-
able fragments of first order logic. Our combination of a
DL with coalition logic brings first-order perspective to rea-
soning about coalitional abilities, while keeping it still de-
cidable. Furthermore, DLs have well developed practical
decision procedures. Last but not least, they comprise the
formal basis of the Semantic Web ontology languages [6].
The Semantic Web is built on the vision of giving explicit
meaning to information, making it easier for software agents
to automatically process and integrate information available
on the Web. Combining agent logics with DLs enables rea-
soning about how (and by whom) the information can be
manipulated, which is potentially interesting for both the
agents community and the Semantic Web community.

The logic that we propose in this paper is a product
style combination of the description logic ALC with coali-
tion logic, that is interpreted over constant domain models.
The resulting multi-modal logic called CLALC allows for ap-
plication of modal operators to both formulas and concepts.
Also, concept names and role names are interpreted locally.
For example, the CLALC formula [a](Sent � Received) can
be used to express that agent a can make the sent mes-

Cite as: Description Logic for Coalitions, Inanç Seylan, Wojciech Jam-
roga, Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.),
May, 10–15, 2009, Budapest, Hungary, pp. 425–432
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

426

sages be received. Another meaningful CLALC specification
Sent � [a]Received says that, for every message that has
been already sent (prior to a’s involvement), a can guaran-
tee its reception. We emphasize that the combination of
logics, studied here, is not trivial. This is because CLALC is
closely related to the Cartesian product CL × S5 (cf. [14,
8] for a more detailed discussion).

Combinations of various modal logics with DLs have been
studied extensively (see [2] and the references therein). In [4],
a tableau algorithm for a fusion style extension of ALC with
belief and intention modalities was developed. Another rel-
evant paper is [12] which studied the simple logic MALC
obtained by combining ALC with monotonic modal opera-
tors that could be applied to formulas and concepts. In this
paper, we show that the satisfiability problem of CLALC is
decidable by giving a tableau decision procedure for it. The
algorithm presented in this paper is developed incrementally
(similarly to [5]): we start with the decision procedure for
MALC from [12], and extend it to handle CLALC .

The paper is organized as follows. First the logic CLALC
is introduced. Then we define structures that are equivalent
to CLALC models. These structures enable us to reason with
CLALC formulas in a more convenient way. Next, we present
our tableau based decision procedure for the satisfiability
of CLALC formulas and show its correctness. Finally, we
conclude the work. Proofs of some lemmas are left out due
to space limits; they can be found in the technical report [13].

2. COALITIONAL DESCRIPTION LOGIC
In this section, we introduce our logic CLALC . The logic

combines the first-order perspective of the basic description
logic ALC with strategic modalities of Coalition Logic. On
the syntactical level, ALC contributes terms for individu-
als and their classes (i.e., concepts), while CL adds opera-
tors for reasoning about outcome of strategies and dynamics
of concepts. On the semantic level, models of CL (which
can be roughly understood as strategic games played suc-
cessively one after another) are enriched with concept struc-
tures that can evolve over time.

2.1 Syntax

Definition 1. Let Agt be a finite non-empty set of agents,
and let NC and NR be countably infinite sets of concept
names and role names, respectively. Modal operators [A]
and 〈A〉 are associated with every coalition A ⊆ Agt. ∧, ∨,
and ¬ represent standard logical connectives. Every concept
name in NC as well as � (top concept) and ⊥ (bottom con-
cept) are concepts. Let C and D be concepts, R a role name
in NR, and A ⊆ Agt. Then ¬C, C � D, C � D, ∀R.C,
∃R.C, [A]C, and 〈A〉C are concepts. C � D and C = D
are atomic formulas. If ϕ and ψ are formulas then so are
¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, [A]ϕ, and 〈A〉ϕ.

That is, atomic formulas compare concepts, and modal
formulas can refer to coalitional ability to enforce a partic-
ular relationship between concepts. For instance, formula
[{jumbo, clown}](Person � Happy) says that Jumbo and the
clown can make every person happy, and 〈{clown}〉¬(Person�
Sad = ⊥) states that the clown cannot prevent (on his
own) some persons from being sad. Concepts are either
primitive or built from simpler ones by use of constructors
¬,�,�, etc. We also add “strategic” concept constructors:

[{clown}]Happy reads as “the set of individuals that can be
turned happy by the clown”, and 〈{jumbo}〉Sad as “those
that Jumbo cannot prevent from becoming sad”.

While writing modal operators, we will omit set braces
from coalitions; for instance, we will write [1, 2] instead of
[{1, 2}]. Note that named individuals are not allowed in
the DL part of our language for ease of presentation. The
interested reader is referred, e.g., to [8] to see how named
individuals can be dealt with.

2.2 Semantics
The semantics of CLALC joins the first-order interpreta-

tion of concepts from ALC with the possible world semantics
of CL operators. The interpretation of a concept can evolve
over time as a result of strategic choices of agents. However,
we assume for simplicity that the domain of interpretation
does not change from state to state.

Definition 2. A coalition model for CLALC is a triple
of the form M = 〈W, E, I〉, where W is a non-empty set of
states, E is a mapping that associates a playable1 effectivity

function Ew : 2Agt → 22W

with each w ∈ W , and I is a
function associating with each w ∈ W an ALC interpretation

I(w) =
D

ΔI(w), ·I(w)
E

. An element V of Ew(A) i.e., a

subset of W , is called an outcome. ΔI(w) is a non-empty set
called the domain of state w, and ·I(w) maps each concept
name C to a subset CI(w) of ΔI(w) and each role name R
to a binary relation RI(w) on ΔI(w). For any w, v ∈ W , we
have ΔI(w) = ΔI(v) (constant domain assumption).

Definition 3 ([10]). An effectivity function Ew is play-
able iff it satisfies the following conditions:

(C1) Ew is serial: ∅ �∈ Ew(A) for all coalitions A.

(C2) Ew is W -complete: W ∈ Ew(A). for all coalitions A.

(C3) Ew is Agt-maximal: for all V , if V �∈ Ew(∅) then
V ∈ Ew(Agt).

(C4) Ew is outcome-monotonic: for all V ⊆ U ⊆ W and
for all A, if V ∈ Ew(A) then U ∈ Ew(A).

(C5) Ew is superadditive: for all V , U , A1, and A2 such
that A1 ∩ A2 = ∅, if V ∈ Ew(A1) and U ∈ Ew(A2)
then V ∩ U ∈ Ew(A1 ∪ A2).

Example 1. Consider a system that consists of a sender
s, a receiver r, and a communication channel c. The sender
can either do nothing (action nop), or send message m1 (ac-
tion send1) or m2 (action send2). The channel can either
transmit the message to the receiver (action t) or ignore it
(action i). We assume that the receiver receives incoming
messages automatically. Thus, he does not execute any rele-
vant actions, and it is enough to include only actions of the
sender and the channel in the model. The action structure
of the system is depicted in Figure 1 (note: only outgoing
transitions from states w0 and w1 are shown).

The domain of interpretation contains only messages, i.e.,
ΔI(w) = {m1, m2} for all w. There are two primitive con-
cepts: Sent and Received that are used to register the mes-
sages that have been sent (resp. received) until the current

moment. The interpretation of Sent (SentI(w)) is denoted

by S in the graph; ReceivedI(w) is referred to with R.

1See below for the definition of playability.

Inanç Seylan, Wojciech Jamroga • Description Logic for Coalitions

427

w0

S = ∅
R = ∅

w1
S = {m1}

R = ∅

w2
S = {m1}
R = {m1}

w3
S = {m2}

R = ∅

w4
S = {m2}
R = {m2}

w5
S = {m1}
R = {m1}

w6
S = {m1, m2}

R = {m1}

w7
S = {m1, m2}
R = {m1, m2}

. . .

nop, t
nop, i

nop, t
nop, i

send1, i

se
nd1,

i

send1, t

send1, i

send1 , t

send1,
t

send2, i

send2 , t

Figure 1: Sending messages through a fitful channel

The interpretation I(w) defines the semantics of primitive
concepts in state w. We extend it to concept descriptions in
the standard DL fashion:

�I(w)
= Δ

I(w)
,

⊥I(w)
= ∅,

(¬C)
I(w)

= Δ
I(w) \ C

I(w)
,

(C � D)
I(w)

= C
I(w) ∩ D

I(w)
,

(C � D)
I(w)

= C
I(w) ∪ D

I(w)
,

(∀R.C)
I(w)

= {δ ∈ Δ
I(w) | ∀δ

′
(〈δ, δ

′〉 ∈ R
I(w) → δ

′ ∈ C
I(w)

)},

(∃R.C)
I(w)

= {δ ∈ Δ
I(w) | ∃δ

′
(〈δ, δ

′〉 ∈ R
I(w) ∧ δ

′ ∈ C
I(w)

)}.

Moreover, we add the following definitions:

([A]C)
I(w)

= {δ ∈ Δ
I(w) | ‖C‖M

δ ∈ Ew(A)},

(〈A〉C)
I(w)

= {δ ∈ Δ
I(w) | W \ ‖C‖M

δ �∈ Ew(A)},

where ‖C‖M
δ = {w ∈ W | δ ∈ CI(w)} is the set of states

that δ belongs to concept C.

Definition 4. The satisfaction relation |= for CLALC is
defined as follows:

M, w |= C � D iff CI(w) ⊆ DI(w),

M, w |= C = D iff CI(w) = DI(w),
M, w |= ¬ϕ iff M, w �|= ϕ,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ,
M, w |= [A]ϕ iff ‖ϕ‖M ∈ Ew(A),
M, w |= 〈A〉ϕ iff W \ ‖ϕ‖M �∈ Ew(A),

where ‖ϕ‖M = {w ∈ W | M, w |= ϕ} is the set of states that
satisfy ϕ in M.

Example 2. For the system from Example 1, we have
for instance w0 |= [c](Sent � Received): the channel can
guarantee that all sent messages will be received. However,
the same property does not hold for some other states (e.g.,
w1 �|= [c](Sent � Received)) because the channel is memo-
ryless and does not buffer undelivered messages. Other im-
portant properties are: ([∅]Sent) = Sent (messages that are
guaranteed to be labeled as sent in the next step are exactly
those that have been sent until now) and ([s]Sent) = � (s is
free to send any message); both formulas hold in every state
of the system.

The following pair of formulas demonstrates the distinc-
tion between [A] as a coalitional modality vs. concept con-
structor. w0 |= ([s, c]Received) = �: every message can be
transmitted successfully if the sender and the channel coop-
erate; however, w0 �|= [s, c](Received = �): s and c cannot
transmit all messages at once.

A formula ϕ is satisfiable if there exist a model M =
〈W, E, I〉 and a state w ∈ W such that M, w |= ϕ. A concept
C is satisfiable if there exist M = 〈W, E, I〉 and w ∈ W

such that CI(w) �= ∅. Concept D subsumes concept C if
CI(w) ⊆ DI(w) for all models M = 〈W, E, I〉 and all w ∈ W .
Note that concept subsumption and concept satisfiability
can be reduced to formula (un)satisfiability. Concept C is
satisfiable iff formula ¬(C � ⊥) is satisfiable and concept D
subsumes concept C iff formula ¬(C � D) is unsatisfiable.
The formula C � D is clearly equivalent to ¬C�D = �, and
C = D to (¬C�D)�(¬D�C) = �. In the remainder of this
paper, we will assume without loss of generality that every
atomic formula is of the form E = � and we will restrict
our attention to satisfiability of formulas.

Example 3. The satisfiability problem for formula
[c](Sent � Received) ∧ ([s]Sent) = � ∧ ([s, c]Received) = �
asks about the existence of a model in which agent c can
guarantee that all sent messages will be received, agent s is
free to send any message, and every message can be trans-
mitted successfully if s and c cooperate.

We observe that, as models of CLALC can be seen as a
class of (possibly evolving) strategic games, the satisfiability
problem for CLALC comes very close to that of mechanism
design, where one seeks a set of rules that guarantees desir-
able behavior of agents and of the whole system.

3. TABLEAUX FOR CLALC
In this section, we define structures called tableaux and

show their equivalences to CLALC models. We proceed in-
crementally: first, we get rid of effectivity functions and
then we define more useful abstractions of constant domain
models. The structure we get at the end which is called a
locally correct tableau is almost directly mappable to the
data structure that the algorithm uses. Such abstractions
of models are commonly used in devising decision proce-
dures [7].

The way we proceed, and the proofs we make along the
way, are very similar to the work of Lutz et al. [8] which
also establishes a methodology for designing tableau decision
procedures for modal DLs with constant domains. Our main
deviation point is that Lutz et al. utilize constraint systems
(i.e., the data structures directly used in the tableau algo-
rithm) from the beginning whereas we postpone the intro-
duction of constraint systems until later. This is the result
of using the tableau abstraction.

To reduce the number of tableau properties, we assume all
formulas and concepts to be in negation normal form (NNF),
i.e., negation signs can appear only in front of atomic for-
mulas and concept names. Every formula (and concept) can
be transformed into an equivalent one in NNF by making
use of de Morgan’s laws, the duality between value restric-
tions and full existential quantifications, and between modal
operators. The NNFs of a formula ϕ and a concept C are
denoted by ¬̇ϕ and ¬̇C, respectively.

For a CLALC formula ϕ, denote by

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

428

• con(ϕ) the set of all concepts occurring in ϕ,

• rol(ϕ) the set of all role names occurring in ϕ,

• Agt the set of all agents occurring in ϕ,

• for (ϕ) the set of all subformulas of ϕ,

• con¬̇(ϕ) = con(ϕ) ∪ {¬̇C | C ∈ con(ϕ)},
• for+(ϕ) = for (ϕ) ∪ {[∅]ϑ | 〈Agt〉ϑ ∈ for (ϕ)},
• con+(ϕ) = con¬̇(ϕ) ∪ {[∅]C | 〈Agt〉C ∈ con¬̇(ϕ)}.

3.1 A Tableau for CLALC

Definition 5. If ϕ is a CLALC formula, a pre-tableau
for ϕ is defined to be a pentuple 〈Σ, Λ,S,L, E〉 such that

• Σ is a non-empty set of states,

• Λ : Σ → 2for+(ϕ) ,

• S is a non-empty set of individuals,

• Lw : S → 2con+(ϕ),

• Ew : rol(ϕ) → 2S×S,

• there is some wϕ ∈ Σ such that ϕ ∈ Λ(wϕ).

A pre-tableau T for ϕ must satisfy some properties so that
its equivalence to a model satisfying ϕ can be shown. These
properties make use of the structure of concepts and for-
mulas. The problem is that modal concepts always interact
with modal formulas and defining the same property three
times (once for a set of modal concepts, once for a set of
modal formulas, and once for a set of modal concepts and
modal formulas) is unnecessary. Therefore, we will use some
notational convenience.

Definition 6. Let 〈Σ, Λ,S,L, E〉 be a pre-tableau for ϕ.
For a state w ∈ Σ, the set Φw is defined as

Φw = {ϑ | ϑ ∈ Λ(w)} ∪ {s : C | C ∈ Lw(s) and s ∈ S}.
α and β are placeholders for elements of a set of the form

Φw. The expression [A]α is either equal to some [A]ϑ or
s : [A]C, and 〈A〉α to some 〈A〉ϑ or s : 〈A〉C. If [A]α = [A]ϑ
or 〈A〉α = 〈A〉ϑ, then α = ϑ; and if [A]α = s : [A]C or
〈A〉α = s : 〈A〉C, then α = s : C.

As a reader with tableau background would notice, the
meanings of the symbols α and β in our unifying notation
are different than in Smullyan’s α and β notation to classify
formulas. We are now in a position to define the properties
of a tableau for ϕ.

Definition 7. Let T = 〈Σ, Λ,S,L, E〉 be a pre-tableau
for ϕ. T is said to be a tableau for ϕ if for all w ∈ Σ, s, t ∈
S, ϑ, ϑ1, ϑ2 ∈ for+(ϕ), C, C1, C2 ∈ con+(ϕ), R ∈ rol(ϕ),
A, A1, . . . , An ⊆ Agt, it holds that:

(P1) if C ∈ Lw(s), then ¬̇C �∈ Lw(s),

(P2) if C1 �C2 ∈ Lw(s), then C1 ∈ Lw(s) and C2 ∈ Lw(s),

(P3) if C1 � C2 ∈ Lw(s), then C1 ∈ Lw(s) or C2 ∈ Lw(s),

(P4) if ∀R.C ∈ Lw(s) and 〈s, t〉 ∈ Ew(R), then C ∈ Lw(t),

(P5) if ∃R.C ∈ Lw(s), then there is some s′ ∈ S such that
〈s, s′〉 ∈ Ew(R) and C ∈ Lw(s′),

(P6) if C = � ∈ Λ(w), then C ∈ Lw(s),

(P7) if ¬(C = �) ∈ Λ(w), then there is some s′ ∈ S such
that ¬̇C ∈ Lw(s′),

(P8) if ϑ ∈ Λ(w), then ¬ϑ �∈ Λ(w),

(P9) if ϑ1 ∧ ϑ2 ∈ Λ(w), then ϑ1 ∈ Λ(w) and ϑ2 ∈ Λ(w),

(P10) if ϑ1 ∨ ϑ2 ∈ Λ(w), then ϑ1 ∈ Λ(w) or ϑ2 ∈ Λ(w),

(P11) if 〈Agt〉α ∈ Φw, then [∅]α ∈ Φw,

(P12) if [A1]α1, . . . , [An]αn ∈ Φw such that a ∈ Ai ∩ Aj im-
plies i = j, then there is v ∈ Σ such that α1, . . . , αn ∈
Φv,

(P13) if 〈A〉α, [A1]α1, . . . , [An]αn ∈ Φw such that a ∈ Ai∩Aj

implies i = j and
Sn

i=1 Ai ⊆ A, then there is some
v ∈ Σ such that α, α1, . . . , αn ∈ Φv,

(P14) if 〈A〉α ∈ Φw, then there is v ∈ Σ such that α ∈ Φv.

Proposition 1. A CLALC formula ϕ is satisfiable iff there
exists a tableau for ϕ.

Proof. For the if direction, let T = 〈Σ, Λ,S,L, E〉 be a
tableau for ϕ. Define for ϑ ∈ for+(ϕ),

�ϑ�T = {w ∈ Σ | ϑ ∈ Λ(w)},
and for C ∈ con+(ϕ) and s ∈ S,

�C�T
s = {w ∈ Σ | C ∈ Lw(s)}.

Note that for every w ∈ Σ, s ∈ S if [A]ϑ ∈ Λ(w) then
�ϑ�T �= ∅, and if [A]C ∈ Lw(s) then �C�T

s �= ∅ because of
Property (P12) in Definition 7.

As a notational convenience, let �α�T be equal to �ϑ�T if
α = ϑ, and let it be equal to �C�T

s if α = s : C. A coalition
model M = 〈W, E, I〉 in which ϕ is satisfied can be defined
as:

1. W = Σ.

2. Ew(A) is equal to V such that

(a) (Case A �= Agt) V = W , or ∃[A1]α1, . . . , [An]αn ∈
Φw :

i. A ⊇ Sn
i=1 Ai,

ii. ∀a ∈ Agt : a ∈ Ai ∩ Aj ⇒ i = j,

iii.
Tn

i=1�αi�T ⊆ V ;

(b) (Case A = Agt) V �∈ Ew(∅).
3. ΔI(w) = S.

4. DI(w) = {s | D ∈ Lw(s)} for all concept names D in
con(ϕ).

5. RI(w) = Ew(R).

Constant domain assumption is validated by the definition
of ΔI(w) given above. The following lemmas complete this
part of the proof:

Lemma 2. For all w ∈ W , Ew is playable.

Lemma 3. For all w ∈ Σ, E ∈ con+(ϕ), and s ∈ S, if

E ∈ Lw(s) then s ∈ EI(w).

Lemma 4. For every w ∈ Σ and ψ ∈ for+(ϕ), if ψ ∈
Λ(w) then M, w |= ψ.

For the converse, a tableau for ϕ can trivially be con-
structed from a model in which ϕ is satisfied.

Inanç Seylan, Wojciech Jamroga • Description Logic for Coalitions

429

3.2 A Quasitableau for CLALC
Representing individuals explicitly in a tableau algorithm

for a modal DL is generally problematic. To the best of
our knowledge, there is no such algorithm for a constant
domain modal extension of ALC that is similar to the logic
considered in this paper. For these reasons, we will use an
abstraction of a tableau called quasitableau.

Definition 8. If ϕ is a CLALC formula, a pre-quasita-
bleau for ϕ is defined to be a tuple 〈Σ, Λ,S,R,L, E〉 such
that:

• Σ and Λ are as given in Definition 5,

• S is a map associating with each w ∈ Σ a non-empty
set of concept types,

• R is a non-empty set of runs and a run r in R is a
function associating with every w ∈ Σ a concept type
r(w) in S(w),

• Lw : S(w) → 2con+(ϕ),

• Ew : rol(ϕ) → 2S(w)×S(w),

• there is some wϕ ∈ Σ such that ϕ ∈ Λ(wϕ).

Concept types can be thought of as templates for individ-
uals, and runs as template instantiation mechanisms. The
set R corresponds to the set S of individuals in a tableau. A
run r ∈ R keeps track of the concept types that represent an
individual in states belonging to Σ. Since r(w) is defined for
each w ∈ Σ, the individual corresponding to r is represented
at each state by a concept type. This satisfies the constant
domain assumption.

It will again be convenient to use a unifying notation for
modal expressions. However, the structural difference be-
tween a tableau and a quasitableau requires the redefinition
and also addition of some notions.

Definition 9. Let 〈Σ, Λ,S,R,L, E〉 be a pre-quasitableau
for ϕ. For a state w ∈ Σ, the set Φw is defined as

Φw = {ϑ | ϑ ∈ Λ(w)} ∪ {s : C | C ∈ Lw(s) and s ∈ S(w)}.
Let Ψ ⊆ Φw be a set consisting only of expressions of

the form [A]α and/or 〈A〉α. Then the set qns(Ψ) is equal to
v ∈ Σ such that Φv is a superset of the union of the following
sets:

1. {ϑ | [A]ϑ (or 〈A〉ϑ) ∈ Ψ}
2. {r(v) : C | r(w) : [A]C (or r(w) : 〈A〉C) ∈ Ψ and r ∈

R}

We are now in a position to define the properties of a
quasitableau for ϕ.

Definition 10. Let Q = 〈Σ, Λ,S,R,L, E〉 be a pre-quasi-
tableau for ϕ. Q is said to be a quasitableau for ϕ if for
all w ∈ Σ, s, t ∈ S(w), ϑ, ϑ1, ϑ2 ∈ for+(ϕ), C, C1, C2 ∈
con+(ϕ), R ∈ rol(ϕ), and A, A1, . . . , An ⊆ Agt, it holds
that:

(P0) there exists a run r in R such that r(w) = s,

(P1) - (P11) are as given in Definition 7 with the only dif-
ference that in the context of a quasitableau we have
concept types instead of individuals,

(P12) if Ψ = {[A1]α1, . . . , [An]αn} ⊆ Φw such that a ∈ Ai ∩
Aj implies i = j, then qns(Ψ) �= ∅,

(P13) if Ψ = {〈A〉α, [A1]α1, . . . , [An]αn} ⊆ Φw such that a ∈
Ai∩Aj implies i = j and

Sn
i=1 Ai ⊆ A, then qns(Ψ) �=

∅,
(P14) if Ψ = {〈A〉α} ⊆ Φw, then qns(Ψ) �= ∅.

(P0) says that each concept type is in the range of some
run. Properties (P12)-(P14) enforce satisfiability preserv-
ing restrictions on the runs in R.

Proposition 5. Let ϕ be a CLALC formula. There exists
a quasitableau for ϕ iff there exists a tableau for ϕ.

Proof. Let T =
˙

ΣT , ΛT ,ST ,LT , ET
¸

be a tableau for
ϕ. Then ϕ ∈ ΛT (wϕ) for some wϕ ∈ ΣT . Fix w ∈ ΣT . Next
define equivalence relations ∼w on ST by putting s ∼w s′ iff
Lw(s) = Lw(s′). Consider the equivalence classes modulo
∼w, abbreviated by [s]w. Obviously, {[s]w | s ∈ ST } is finite.
Choose for each equivalence class [s]w a concept type t[s]w .
Define mappings γw which map concept types t[s]w to sets of
domain objects s ∈ ST in the obvious way i.e., γw(t[s]w) =

[s]w. A quasitableau Q =
˙

ΣQ, ΛQ,SQ,R,LQ, EQ
¸

can be
defined from T with

1. ΣQ = ΣT

2. ΛQ(w) = ΛT (w)

3. SQ(w) = {t[s]w | s ∈ ST }
4. R = {rs | s ∈ ST and ∀w ∈ ΣQ, rs(w) = t[s]w}
5. LQ

w(t[s]w) = {C | s ∈ ST and C ∈ LT
w(s)}

6. EQ
w (R) = {〈t, t′〉 | ∃ s ∈ γw(t) and s′ ∈ γw(t′) with

〈s, s′〉 ∈ ET
w (R)}.

It is easy to see that Q satisfies all properties in Definition
10. That ϕ ∈ ΛQ(wϕ) follows from the construction of ΛQ.

For the converse, a tableau for ϕ can easily be constructed
by viewing R as the set of individuals in the tableau.

3.3 A Locally Correct Tableau for CLALC
It turns out that a more compact representation of a qua-

sitableau is possible by relaxing the definition of a run. We
first define this structure called a locally correct tableau.
Then we show how it can be turned into a quasitableau
(and vice versa).

Definition 11. If ϕ is a CLALC formula, a locally cor-
rect pre-tableau for ϕ is defined as a hextuple 〈Σ, Λ,S,O,L, E〉
such that

• Σ, Λ, S, L, and E are as given in Definition 8.

• O is a non-empty set of overruns (short for overloaded
runs) and an overrun o ∈ O is a function associating
with every w ∈ Σ a non-empty set of concept types
o(w) which is a subset of S(w),

• there is some wϕ ∈ Σ such that ϕ ∈ Λ(wϕ).

For a state w ∈ Σ and an overrun o ∈ O, |o(w)| is called
the overloading factor of o in w.

An overrun, in contrast to a run, can associate with a
state more than one concept type; thus, enabling concept
types to be reused. It is this generalization that makes a
locally correct tableau a more compact representation of a
model than a quasitableau.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

430

Definition 12. Let 〈Σ, Λ,S,O,L, E〉 be a locally correct
pre-tableau for ϕ. For a state w ∈ Σ, the set Φw is defined
as

Φw = {ϑ |ϑ ∈ Λ(w)} ∪ {s : C |C ∈ Lw(s) and s ∈ S(w)}.
Let Ψ ⊆ Φw be a set consisting only of expressions of

the form [A]α and/or 〈A〉α. Then the set lns(Ψ) is equal
to v ∈ Σ such that for each [A]ϑ (or 〈A〉ϑ) ∈ Ψ, ϑ ∈ Φv;
and for each s with s : [A]C (or s : 〈A〉C) ∈ Ψ, there exists
a concept type t ∈ S(v) with {C | s : [A]C (or s : 〈A〉C) ∈
Ψ} ⊆ Lv(t), s ∈ o(w), and t ∈ o(v).

Let o be an overrun with o(w) = {s, t} and w ∈ Σ, i.e.,
the individual corresponding to o is represented by s and t
in w. This doesn’t mean that s and t are the same concept
types. Properties in the following definition make use of this
feature.

Definition 13. Let T = 〈Σ, Λ,S,O,L, E〉 be a locally
correct pre-tableau for ϕ. T is said to be a locally correct
tableau for ϕ if for all w ∈ Σ, s, t ∈ S(w), ϑ, ϑ1, ϑ2 ∈
for+(ϕ), C, C1, C2 ∈ con+(ϕ), R ∈ rol(ϕ), and A, A1, . . . , An

⊆ Agt, it holds that:

(P0) there exists an overrun o in O such that s ∈ o(w),

(P1) - (P11) are as given in Definition 10,

(P12) if Ψ = {[A1]α1, . . . , [An]αn} ⊆ Φw such that a ∈ Ai ∩
Aj implies i = j, then lns(Ψ) �= ∅,

(P13) if Ψ = {〈A〉α, [A1]α1, . . . , [An]αn} ⊆ Φw such that a ∈
Ai ∩Aj implies i = j and

Sn
i=1 Ai ⊆ A, then lns(Ψ) �=

∅,
(P14) if Ψ = {〈A〉α} ⊆ Φw, then lns(Ψ) �= ∅.

(P0), (P12)-(P14) are analogous to their counterparts in
Definition 10. It is therefore not hard to acknowledge that a
quasitableau for ϕ is also a locally correct tableau for ϕ be-
cause each run in the quasitableau can be seen as an overrun
with the overloading factor of one. However, the converse
does not hold because there exist cases in which we can’t
(immediately) define R.

Example 4. Consider the locally correct tableau
T = 〈Σ, Λ,S,O,L, E〉 for ϕ with Σ = {w, v} and Lw(s) =
{[1]C, [2]D, [2, 3]E}, Lv(s) = {C, D}, Lv(t) = {C, E} (it
does not matter how ϕ actually looks like). T is obviously a
locally correct tableau, but it cannot be a quasitableau for ϕ:
there exists no run r with r(w) = s, because whatever choice
r(v) = s or r(v) = t we make, (P12) in Definition 10 does
not hold. However, it is possible to modify T and convert
it into a quasitableau by duplicating the state v with all the
necessary mappings.

Proposition 6. Let ϕ be a CLALC formula. There exists
a locally correct tableau for ϕ iff there is a quasitableau for
ϕ.

The proof of the proposition given above generalizes the
observation we made in our example. The following is an
immediate consequence of Propositions 1, 5, and 6.

Theorem 7. A CLALC formula ϕ is satisfiable iff there
exists a locally correct tableau for ϕ.

4. TABLEAU ALGORITHM FOR CLALC
From Theorem 7, an algorithm which constructs a (finite)

representation of a locally correct tableau for a CLALC for-
mula can be used as a decision procedure for the satisfiabil-
ity of CLALC formulas. In this section, such an algorithm
is described, and we prove its termination, soundness, and
completeness.

4.1 Definition of the Algorithm
Let NV be a set of countably infinite variable names, and

< be the well-order relation on NV , and let ϕ be a CLALC
formula. A constraint for ϕ is (i) a formula in for+(ϕ), (ii)
an atom of the form x : C where x ∈ NV and C is a concept
in con+(ϕ), or (iii) an atom of the form (x, y) : R where
x, y ∈ NV and R is a role in rol(ϕ). A constraint system
S for ϕ is a finite, non-empty set of constraints for ϕ. A
completion set T for ϕ is a set of constraint systems for ϕ.

In order to avoid defining analogous expansion rules for
different constraints with modal operators, we will employ
the α, β unifying notation that we used in the properties of
tableaux.

A variable x occurs in S if either one of x : C, (x, y) : R,
or (y, x) : R is in S. x is fresh for S if x does not occur in
S and x > y for all y occurring in S. If S ∈ T, then the
definition of occurs and fresh are also extended for T. We
assume that when a variable x occurs in S, the constraint
x : � is also in S. If (x, y) : R ∈ S for some R, then y is
called a R-successor of x w.r.t. S, or just a successor when
R is not important.

A variable x is blocked by another variable y w.r.t. a
constraint system S if {C | x : C ∈ S} ⊆ {D | y : D ∈ S}
and y < x. S (and therefore T if S ∈ T) is said to contain a
clash if for some variable x and some concept C, {x : C, x :
¬̇C} ⊆ S, or if for some formula ϑ, {ϑ, ¬̇ϑ} ⊆ S.

Let S be a constraint system for a CLALC formula ϕ. The
equivalence relation ∼S on the set of variables occurring in
S is defined by taking x ∼S y iff {C | x : C ∈ S} = {D | y :
D ∈ S}. The equivalence class generated by x is denoted by
[x]S . Finally, ∼(S) = {min([x]S) : C | x : C ∈ S} ∪ {ϑ | ϑ ∈
S}.

Let S be a constraint system for a CLALC formula ϕ.
S′ ⊆ S is called a modal saturation in S if S′ is equal to

1. {[A1]α1, . . . , [An]αn} such that a ∈ Ai ∩ Aj implies
i = j,

2. {〈A〉α, [A1]α1, . . . , [An]αn} such that a ∈ Ai ∩ Aj im-
plies i = j and

Sn
i=1 Ai ⊆ A, or

3. {〈A〉α}.
Let S be a modal saturation. Then strip(S) is equal to
{α | [A]α (or 〈A〉α) ∈ S}.

The tableau expansion rules are given in Figures 2 (local
expansion rules) and 3 (the global expansion rule). A rule is
applicable to a constraint system S if S satisfies the condition
of the rule. A rule is applied to S if its action is executed
due to the applicability of the rule to S.

Let ϕ be the CLALC concept to be tested for satisfiabil-
ity. The tableau algorithm starts with the completion set
Tϕ = {S}, where S = {ϕ, x : �}. Tϕ is then expanded
by repeatedly applying the rules in such a way that the
global expansion rule is applied only when none of the local
expansion rules is applicable to a constraint system. The

Inanç Seylan, Wojciech Jamroga • Description Logic for Coalitions

431

The R∧ rule
Condition: ϑ1 ∧ ϑ2 ∈ S and {ϑ1, ϑ2} �⊆ S.
Action: Set S = S ∪ {ϑ1, ϑ2}.
The R∨ rule
Condition: ϑ1 ∨ ϑ2 ∈ S and {ϑ1, ϑ2} ∩ S = ∅.
Action: Set S = S ∪ {ψ} for some ψ ∈ {ϑ1, ϑ2}.
The R� rule
Condition: x : C1
 C2 ∈ S and {x : C1, x : C2} �⊆ S.
Action: Set S = S ∪ {x : C1, x : C2}.
The R� rule
Condition: x : C1 � C2 ∈ S and {x : C1, x : C2} ∩ S =

∅.
Action: Set S = S∪{x : E} for some E ∈ {C1, C2}.
The R∃ rule
Condition: x : ∃R.C ∈ S, x is not blocked w.r.t. S,

and x has no R-successor y w.r.t. S with
y : C ∈ S.

Action: Choose a fresh y for S and set S = S ∪
{(x, y) : R, y : C}.

The R∀ rule
Condition: x : ∀R.C ∈ S, there is a R-successor y of x

w.r.t. S with y : C �∈ S.
Action: Set S = S ∪ {y : C}.
The R= rule
Condition: C = � ∈ S and x : C �∈ S for a variable x

occurring in S.
Action: Set S = S ∪ {x : C}.
The R	= rule
Condition: ¬(C = �) ∈ S and there is no variable x

such that x : ¬̇C ∈ S.
Action: Choose a fresh x for S and set S = S∪{x :

¬̇C}.
The R〈Agt〉 rule
Condition: 〈Agt〉α ∈ S and [∅]α �∈ S.
Action: Set S = S ∪ {[∅]α}.

Figure 2: Local expansion rules for CLALC.

The R[A〉 rule
Condition: S1, . . . , Sn are all the modal saturations in

S and S is not marked as finished.
Action: Choose a fresh x for S, create sets S′

i =
∼(strip(Si) ∪ {x : �}) where 1 ≤ i ≤ n,
add them to T, and mark S as finished.

Figure 3: The global expansion rule for CLALC.

expansion continues until the resulting completion set con-
tains a clash or none of the rules is applicable to it. Such a
completion set is called complete. If the expansion rules can
be applied to Tϕ in such a way that they yield a complete,
clash-free completion set, then the algorithm returns “ϕ is
satisfiable”, and “ϕ is unsatisfiable” otherwise.

4.2 Correctness and Termination

Theorem 8 (termination). When started with the ini-
tial completion set Tϕ, the tableau algorithm terminates.

Proof. Let T be the completion set for ϕ that is con-
structed by the algorithm from Tϕ and Sj an element of
T with 1 ≤ j ≤ |T|. Denote by Lj(x) the set of con-
cepts {C | x : C ∈ Sj}. The modal depth md(ψ) of ψ is
the length of the longest chain of nested modal operators
in ψ (both in subformulas and subconcepts). The modal
depth md(x : C) of a constraint x : C is defined analo-
gously. The modal depth md(Sj) of a constraint system Sj

is the maximal modal depth of constraints in Sj . The fol-

lowing properties can easily be derived from the definition
of the algorithm:

1. The expansion rules never remove constraints from
constraint systems or constraint systems from the com-
pletion set.

2. The number of subsets of con+(ϕ) is 2con+(ϕ), hence
finite.

3. |for+(ϕ)| is finite.

To prove that any sequence of rule applications is finite, it
will be enough to show that there can only be finitely many
constraint systems in T and finitely many variables in Sj .
Let us first show that

(I) Sj can only have finitely many variables.

Consider all possible cases for variable introducing rules:

• R∃: As there can only be a finite number of distinct
Lj(x) in Sj (by Property 2 above), a path of role suc-
cessors will eventually get blocked (by Property 1).
Hence the generation of a role path with infinite length
is not possible.

• R 	=: As there can only be a finite number of constraints
of the form ¬(C = �) in Sj (by Property 3 above), the
number of R	= applications is limited in Sj .

• R[A〉: By the definition of this rule, the constraint sys-

tem S ⊆ Sj contains not more than 2con+(ϕ) distinct
variables at the moment of its generation.

Now we show that the number of constraint systems in
T should also be finite. From (I) and Property 2, we know
that there are finitely many constraints of the form x : [A1]C
and y : 〈A2〉D in Sj . Also, the number of modal formulas in
Sj is finite due to Property 3. Hence, the maximal number
of constraint systems generated by the global expansion rule
from Sj is finite. Let Sl be such a constraint system. Clearly,
md(Sl) < md(Sj). Thus, it is not possible to have an infinite
chain of constraint systems starting from Sj .

Theorem 9 (soundness). If, when started with the ini-
tial completion set Tϕ for a CLALC formula ϕ, the expan-
sion rules can be applied in such a way that they yield a
complete and clash-free completion set, then there exists a
locally correct tableau for ϕ.

Proof. Let T be the complete and clash-free completion
set constructed by the tableau algorithm from Tϕ. A pen-
tuple T = 〈Σ, Λ,S,L, E〉 can be defined from T with:

1. Σ = {j | Sj ∈ T for 1 ≤ j ≤ |T|},
2. Λ(j) = {ψ | ψ ∈ Sj},
3. S(j) = {x | x occurs in Sj and x is not blocked wrt Sj},
4. Lj(x) = {C | x ∈ S(j) and x : C ∈ Sj},
5. Ej(R) is equal to 〈x, y〉 ∈ S(j) × S(j) such that

(a) (x, y) : R ∈ Sj , or

(b) (x, z) : R ∈ Sj and y blocks z.

T satisfies properties (P1)-(P11) from Definition 13 be-
cause the expansion rules are not applicable to T in view of
its completeness. To show that properties (P0), (P12)-(P14)
hold, one must inductively construct an overrun o in T .

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

432

Theorem 10 (completeness). If there exists a locally
correct tableau for ϕ, when started with the initial completion
set Tϕ, the expansion rules can be applied in such a way
that the tableau algorithm yields a complete and clash-free
completion set.

Proof. Let T = 〈Σ, Λ,S,O,L, E〉 be a locally correct
tableau for ϕ. We use this tableau to guide the application
of the non-deterministic rules to construct a complete and
clash-free completion set for ϕ. Suppose that T is a com-
pletion set for ϕ. Define J as {j | Sj ∈ T for 1 ≤ j ≤ |T|}
and say that T is T -compatible if the following holds:

1. there is a map σ from J to Σ such that if ϑ ∈ Sj then
ϑ ∈ Λ(σ(j)), for every ϑ ∈ for+(ϕ);

2. for each j ∈ J , there is a total function πj from the set
of variables in Sj to the set of concept types in S(σ(j))
such that if x : C ∈ Sj then C ∈ Lσ(j)(πj(x)), and if
y is a R-successor of x w.r.t. Sj then 〈πj(x), πj(y)〉 ∈
Eσ(j)(R).

Lemma 11. If a completion set T for ϕ is T -compatible
and T′ is the result of an expansion rule (R) application to
T, then T′ is T -compatible as well.

Now we show that the completeness of the tableau algo-
rithm follows from the lemma above. Let S1 be the (ini-
tial) constraint system in Tϕ, and x the variable in S1. Set
σ(1) = wϕ and π1(x) = s for a s ∈ S(wϕ) (such wϕ and s ex-
ist since T is a locally correct tableau for ϕ). It is easy to see
that these functions are as needed for Tϕ’s T -compatibility.
We know by the claim above that whenever a rule is appli-
cable to Tϕ, it can be applied in a way that it maintains
T -compatibility. Also, from Theorem 8, any sequence of
rule applications must terminate. Thus, we have eventually
a completion set T that is T -compatible. This completion
set must be clash-free.

Suppose otherwise. Let Sj be a constraint system in T
such that {x : C, x : ¬̇C} ⊆ Sj . Then we have {C, ¬̇C} ⊆
Lσ(j)(πj(x)) which violates Property (P1) in Definition 13.
A similar argument can be made for a clash of the form
{ϑ, ¬̇ϑ} ⊆ Sj .

5. CONCLUSIONS
In this paper, we introduce the coalitional description

logic CLALC and present a tableau decision procedure for
its constant domain variant. To our best knowledge, this is
the first formal study of a logic that combines DL perspec-
tive with strategic modalities. Therefore, the paper can be
seen as an initiative to integrate the game-theoretic dimen-
sion with description logics. Alternatively, one can see our
proposal as an attempt to extend the agenda of modal logics
of strategies to reasoning about individuals and their classes
without losing decidability.

We believe that our work can be useful for the semantic
web community. One of the most interesting problems in
this area is to discover (in an automated way) a sequence of
service executions that will satisfy a user’s goals. Current
approaches are mainly based on standard DL subsumption
testing of the desired input and output classes [9]. On the
other hand, agent logics provide well studied semantics of
time, action, and strategy execution, that can be used in
reasoning about web services.

Our results are also interesting algorithmically. An im-
portant property regarding the optimization of our decision
procedure for CLALC is that once the application of expan-
sion rules to a constraint system has been exhausted, the
algorithm can simply discard the constraint system from its
memory. This is a unique feature for a constant domain
modal DL, and the major difference from the decision pro-
cedure for KALC [8], i.e., the normal modal logic extension
of ALC. Moreover, our algorithm does not need marked
variables and the non-deterministic rules which make use of
the variables in [8].

6. REFERENCES
[1] F. Baader et al., editors. The Description Logic

Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[2] F. Baader, R. Küsters, and F. Wolter. Extensions to
description logics. In Baader et al. [1], pages 219–261.

[3] F. Baader and W. Nutt. Basic description logics. In
Baader et al. [1], pages 43–95.

[4] R. C. Erdur and İ. Seylan. The design of a semantic
web compatible content language for agent
communication. Expert Systems, 25(3):268–294, 2008.

[5] H. H. Hansen. Tableau games for coalition logic and
alternating-time temporal logic. Master’s thesis,
Universiteit van Amsterdam, 2004.

[6] I. Horrocks, P. F. Patel-Schneider, and F. van
Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

[7] I. Horrocks, U. Sattler, and S. Tobies. Practical
reasoning for expressive description logics. In
Proceedings of LPAR ’99, pages 161–180, 1999.
Springer.

[8] C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev.
A tableau decision algorithm for modalized ALC with
constant domains. Studia Logica, 72(2):199–232, 2002.

[9] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara. Semantic matching of web services
capabilities. In I. Horrocks and J. A. Hendler, editors,
Proceedings of ISWC, volume 2342 of LNCS, pages
333–347. Springer, 2002.

[10] M. Pauly. Logic for Social Software. PhD thesis,
University of Amsterdam, October 2001.

[11] M. Pauly. A modal logic for coalitional power in
games. Journal of Logic and Computation,
12(1):149–166, 2002.

[12] İ. Seylan and R. C. Erdur. A tableau decision
procedure for ALC with monotonic modal operators
and constant domains. In C. Areces and S. Demri,
editors, Proceedings of M4M, 2007.

[13] İ. Seylan and W. Jamroga. Description logic for
coalitions. Technical Report IfI-08-14, Clausthal
University of Technology, 2008.

[14] F. Wolter and M. Zakharyaschev. Dynamic
description logics. In M. Zakharyaschev, K. Segerberg,
M. de Rijke, and H. Wansing, editors, Proceedings of
AIML, pages 431–446. CSLI Publications, 1998.

[15] M. Wooldridge, T. Agotnes, P. E. Dunne, and
W. van der Hoek. Logic for automated mechanism
design – a progress report. In Proceedings of AAAI-07,
2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

